
Percorsi di insegnamento/apprendimento della matematica ad allievi debolmente scolarizzati

20 APRILE 20187

Giovanni Giuseppe Nicosia gg.nicosia@gmail.com

RSDDM – ISGEm – FLC CGIL – CDD Giovanni Sedioli

Gentile non apprezzava

- Né il lavoro
 - Cosa da popolani
- Né le scienze
 - Le riteneva staccate dal sapere umanistico e seconde ad esso
- Odiava la matematica

Scuola

- Giovanni Gentile (1875 1944)
 - Fondatore della scuola italiana nel 1923
- Scuola fascista:
 - Di massa, universale e gratuita
 - Centralizzata (direttive e programmi ministeriali dettagliatissimi)
 - Omologante (nessun riconoscimento a differenze regionali, sociali, culturali o religiose)
 - Classista, con percorsi rigidi e separati
 - Studio libresco e lungo per pochi dirigenti
 - Addestramento più breve al lavoro manuale per le masse
 - Astratta (né studi sociali, né statistica)

95 anni dopo

- La scuola italiana è una scuola democratica:
 - È estremamente articolata
 - Ammette intersezioni tra i diversi percorsi
 - Collabora con altre agenzie educative
 - Si apre alla realtà (studi sociali, statistica, modellizzazione...)
 - Cerca la sinergia con enti, organizzazioni, ed aziende del territorio
 - Prevede la convivenza di più culture
 - Riconosce più lingue, codici e stili cognitivi diversi
 - Si interessa di ciò che accade in Europa e nel mondo
 - Include tutti i cittadini (l.104/92, l.170/10, c.m.27/12/12)
 - Lotta contro la dispersione

Retaggi gentiliani latenti

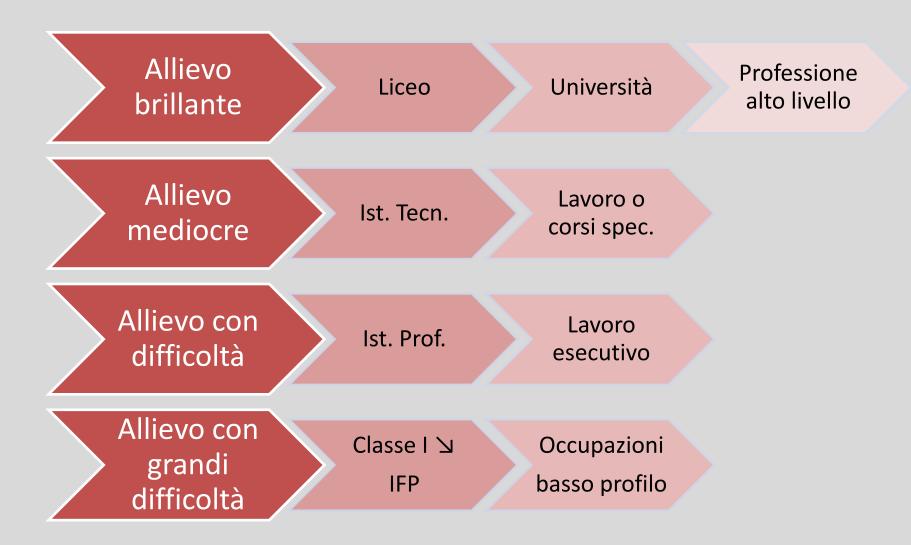
- Opinione pubblica italiana e alcuni insegnanti
- Selezione Vs inclusione
- Lavoro manuale Vs professioni intellettuali
 - Pregiudizio contro
 - Istituti professionali
 - Didattica laboratoriale
- Gerarchia delle scuole Sec. II Gr.
- Il Ministero da anni contrasta questa visione:
 - Collaborazioni e stage con enti esterni alla scuola
 - Didattica per competenze
 - Didattica laboratoriale
 - Avvicinamento dei curricoli del I biennio del II Grado
- Realtà esterna ben diversa dal modello gentiliano
 - Voti ed esiti sul lavoro o all'università sono dissonanti

Gerarchia "malata" scuole di II Gr.

Licei

Studio intellettuale e libresco per proseguimento in università CLASSE DIRIGENTE

Istituti tecnici
Studio applicativo
per inserimento lavorativo
PROFESSIONI DI LIVELLO MEDIO-ALTO


Istituti professionali statali
Attività laboratoriali, abilità semplici
ESECUTIIVI SEMPLICI

Formazione professionale (enti e scuole regionali)

Attività laboratoriali, abilità semplici

ESECUTIIVI SEMPLICI

Orientamento "malato" fine III Sec. I Grado

Orientamento "malato"

- Quelli che alla secondaria di I gr. vanno bene sono indirizzati ai licei
- Quelli che hanno difficoltà e alunni con BES
 - Disabili con certificazione, difficoltà specifiche, DSA
 - Problemi comportamentali, sociali o psicologici
 - Difficoltà linguistiche o di adattamento culturale
- Vengono indirizzati agli Istituti Professionali
 - Classi molto difficili
 - Eccessivamente numerose
- (In altri Paesi si iscrive al professionale chi apprezza le attività che vi si propongono)
- Quelli che non riescono ad adattarsi all'IP vengono mandati in Formazione appena la legge lo consente

Riorientamento gerarchico

 Uno studente in difficoltà viene bocciato e riorientato verso la scuola di "rango" minore

```
Liceo \(\sigma\)

Ist. Tecnico \(\sigma\)
```

Formazione Professionale Regionale

- Bocciare e riorientare senza progetti specifici significa disperdere!
 - Abbandona il 5,1% degli alunni "in ritardo"
 Vs lo 0,4% per gli alunni in regola.

Dispersione scolastica 2015/16 \rightarrow 2016/17

- 14.258 studenti della Sec. I Gr. (0,8%)
 - Peggiore il Sud 1% sud (1,2% Sicilia e Sardegna;
 0,9% Magna Grecia)
 - Migliore il Nord Est 0,6%
 - Emergenze: Sicilia 1,3%, Calabria, Campania,
 Lazio: 1%
 - Casi confortanti: Emilia Romagna, Marche: 0,5%
- I maschi abbandonano più delle femmine
- Citt. non it.: 3,3% Vs citt. It.: 0,6%
- Citt. non it. nati all'estero: 4,2% Vs G2: 2,2%.

I Gr. $(2015/16) \rightarrow II$ Gr. (2016/17)

- Passano di grado 556.598 studenti
- Usciti dal sistema 34.286 (6,16%)
 - 4,47% Formazione Professionale Regionale
 - 0,02% apprendistato
 - 0,06% abbandono per istr. Parentale o trasferimento all'estero
 - 1,61% ha abbandonato del tutto
- Poi al II Gr. abbandonano 112.240 (4,3%)
 - Durante o alla fine del primo anno (7%)
 - Sc. paritarie 7,6% Vs Statali (4,1%)
 - Licei 2,1% (artistico 4,8%)
 - Isstt. Teccnn. 4,8% (econ. 5,2%, tecnol. 4,6%)
 - Isstt. Proff. 8,7% (IPIA 11%)
 - leFP 9,5%

Studenti di cittadinanza non italiana a.s. 2015/2016

- 814.851 (circa il 10% su pop. scolastica di 7.816.408)
 - 10,4% pop. scol. scuola dell'infanzia
 - 10,6% pop. scol. primaria
 - 9,4% pop. scol. secondaria di primo grado
 - 7,0% pop. scol. secondaria di secondo grado
- +653 (+0,1%) risp. anno prec.
 - Emilia Romagna quasi 16%
 - Lombardia 14,5% (203.979 massimo assoluto)
 - Umbria 13,8%
 - Toscana 13,1%
 - Veneto 12,9%
 - Piemonte 12,9%
 - Liguria 12,0%
 - Regioni meridionali % ovunque inferiore alla media nazionale.

Da dove vengono?

- Nati in Italia 478.522
 - 5,4% su pop. scol.,
 - 58,7% su studd. citt. non it.)
- +28.093 (+6,2%) risp. a.s.
 precedente
- erano il 3,7% della pop.
 scol. nel a.s. 2011/2012
- Distribuzione molto irregolare tra le regioni

- Oltre 200 cittadinanze
- Il 70% è tra le prime 10:

		457000
Ι.	Romania	157.806
	Moniania	±37.000

XIV.Macedonia 15.775

XV. Bangladesh 14.278

Studenti adulti

- Non hanno tempo a casa
- Motivazione:
 - In molti casi ne hanno a livello generale (sulla scuola e sulla loro presenza)
 - Ma sulle singole competenze o contenuti bisogna attivarla seguendo interessi ed esperienze vissuta
 - Fisica e chimica in cucina e in officina
 - Algebra al supermercato, geometria nel parcheggio
 - Scelta del piano tariffario del cellulare con rette nel Piano Cartesiano (ricerca operativa)
- Hanno conoscenze e modelli mentali, alcuni da riorganizzare
 - Convinzioni matematiche
 - L'insieme N "comincia" da 1
 - grande perimetro = grande area
 - moltiplicando si ottiene sempre qualcosa di più grande
 - Modelli scientifici ingenui
 - Peso = massa
 - Teorie "flogistiche" sul calore

Intersezione di due mondi

La vita reale

1. Persone adulte o quasi

- Età molto diversificate
- Atteggiamenti e problemi

Lavoratori

- Salario
- Responsabilità e mansioni
- Tempi di vita

3. Consumatori

- Affitti, beni di consumo
- Denaro (rate, bollette, imposte,...)

4. Cittadini

- Istituzioni
- Partecipazione
- Utenti
- 5. Parte di una cultura

La scuola

Discipline

- Definizioni
- Interessi e oggetti di studio
- Metodi

Didattica

- Indicazioni nazionali, linee guida ministeriali (elencano competenze e oggetti disciplinari)
- Prassi d'aula
- Concetti astratti, regole di calcolo, applicazioni

Concezioni di scuola

- Ruolo nella vita individuale
- Obiettivi
- Metodi

Un altro problema culturale

- La Matematica e le Scienze sono spesso presentate come astratte, universali, prive di storia, uguali in tutti i contesti
- Conflitto con aspettative, convinzioni e modelli ereditati dalle culture di appartenenza su:
 - 1. Ruolo della scuola nella vita e nella società

2. Discipline:

- Matematica = calcolo, geometria, statistica, applicazioni economiche ...?
- Scienze = biologia, chimica, applicazioni tecnologiche?

3. Didattica:

- Lezioni frontali, attività di laboratorio o applicazioni?
- Lavoro collettivo o individuale?
- Addestramento alle procedure o costruzione di competenze?
- Sapere dato cui accedere o saperi da costruire personalmente?

Tre cose in relazione

- Oggetti matematici
 - Astratti e irraggiungibili dai sensi (numeri)
 - Definizioni esplicite legate ad una teoria (logica)
 - Regole di combinazione con altri oggetti matematici (operazioni)
- Modelli mentali
 - Insiemi di proprietà degli oggetti (il nostro concetto di numero) SOLO ALCUNE
 - Raggiungibili dall'<u>intuizione</u> (modelli ingenui)
- Rappresentazioni
 - Segni, simboli, parole, oggetti, gesti ... (numerali)
 - Li usiamo attribuendo <u>significati</u> (<u>semantica</u>) e ci operiamo con regole sintattiche (*algoritmi*)
- Influenza reciproca e grossi problemi semiotici
- Molte regole implicite, culturalmente connotate,

Oggetto matematico
Proprietà
matematiche
incoglibile
Relazioni con altri
oggetti matematici

Rappresentazione Regole sintattiche *sensi* Operazioni concrete

Modello mentale
Alcuni aspetti
dell'oggetto
matematico
ragione
Relazioni con altri
modelli

Scoprire la loro etnomatematica

- Temi, problemi, rappresentazioni, metodi...
- Come conti?
 - Numerali concreti (dita, palline...)
 - Numerali orali (parole, sintassi...)
 - Numerali scritti (cifre, leggi di composizione...)
- Come rappresenti?
 - Disegni geometrici
 - Schemi, grafi, mappe...
 - Tabelle
 - Grafici cartesiani
 - Oggetti...
- Che operazioni fai con queste rappresentazioni?
- Come risolvi un problema?
 - Tentativi ed errori
 - Cultura, tradizione, documentazione

Concezioni di

- Matematica
 - Oggetti matematici
 - rappresentazioni
 - Processi
 - Temi ed ambiti
- Scuola
 - Funzioni, obiettivi
 - forme
- Didattica
 - Obiettivi
 - Abilità, conoscenze, competenze
 - Metodi
 - Memorizzazione, esercizi, problemi

- Indagine esplicita o implicita
 - Osservazione etnografica
- Analisi degli errori
 - Resti di modelli e rappresentazioni adatte ad altri contesti
- Studi di cornice
 - Antropologici, sociologici
 - Statistiche (MIUR, ISTAT...)
 - Etnomatematica

E la nostra etnomatematica?

- Mica penserete di avere una visione neutrale!
- Gioco della "rete matematica"

I Numeri Naturali

- Sono quelli più semplici: li impariamo per primi
- Problema delle rappresentazioni
 - Parole
 - Scritture
 - Oggetti
- La struttura sintattica della rappresentazione influisce sulla struttura dei modelli
- Riferimenti ad elementi culturali
- Le rappresentazioni numerali sono parte della nostra cultura

Numerali orali

1) Caratteristiche lessicali, semantiche, connotative:

- parole diverse evocano significati diversi
- relazioni con altre parole
- etimologie, assonanze
- referenze simboliche
 - It. 1 uno ← unico, unione, universo, università,... (legami semantici e fonetici)
 - Ted. 0 null ← Lat. ullus ← unulus "piccolo uno" (etimologia),
 - Ingl. 2 two ↔ twin "gemello", twain "paio", twelve 12, twenty 20,... (etimologia, assonanze)
 - In diverse lingue (Ar. classico, Gr. antico, Lat. arcaico,...) accanto al singolare ed al plurale si ammettono forme duali (legame simbolico)
 - Lat. 3 ter ← magister = magis-ter "più (di) tre" (etimologia, legame simbolico)
 - superstizioni e tradizioni sui numeri: 3 (culture latine, religioni monoteiste), 4 (cultura cinese), 7, 13 (mondo anglosassone), 17 (culture del Mediterraneo),... (simbologie)

2) Caratteristiche grammaticali, sintattiche, concettuali

- legate al ruolo sintattico e logico delle parole numerali all'interno di una lingua o di un universo simbolico
 - in Italiano si concorda e si declina solo uno, in molte altre lingue c'è una flessione anche per altri numerali orali; prevale il loro carattere di aggettivi
 - in Cinese vige il sistema dei classificatori, cioè si usano sistematicamente numerali diversi per contare oggetti diversi per forma, uso, area di affinità logica,...
 - In Italiano ciò avviene solo in casi assai particolari (una coppia di fagiani ed un paio di giorni)

3) Molteplicità di lingue:

- in Italia si usa l'Italiano e qualche dialetto e con essi si conta e si fanno calcoli in tutti gli ambiti. In particolare si usano sempre gli stessi numerali;
- in molti Paesi che sono o che sono stati colonie si può ricorrere a diverse lingue per usi diversi, anche per quanto riguarda i numerali;
- per gli usi ufficiali si usa la lingua della potenza colonizzatrice (che talora ha unificato il Paese) ed in casa se ne usa un'altra;
- in certi casi le lingue di riferimento sono anche di più: quella ufficiale, una diversa lingua nazionale e poi una lingua a diffusione locale;
- può capitare che i numerali di alcune lingue siano specializzati per certi ambiti.

Le Filippine: 7.000 isole, 170 lingue

- Lingue: Filippino, Inglese, un po' di Spagnolo e spesso anche almeno una delle altre 170 lingue maggioritarie
- numerali diversi a seconda della situazione e di che cosa si vuole contare o calcolare:
- a scuola si studia più che altro in Inglese: numerali inglesi e "plus", "minus", "times", "divided", "square root",...
- per usi ufficiali si usano i numerali del Filippino,
- fuori da Manila per indicare fino a 10 cose in casa (e al mercato,...) si usano i numerali delle lingue locali,
- oltre 10 si usano i numerali dello Spagnolo, frammisti talora a qualche forma inglese,
- per indicare somme di denaro si usano numerali spagnoli, seguiti dalla parola pesos (la moneta),
- per 1 peso l'esercente dirà piso, senza alcun articolo.

Numerali scritti:

4) Lista delle cifre (numerali fondamentali)

- Indicano direttamente alcuni numeri privilegiati
- Servono a costruire tutti gli altri

indoarabo

0	1	2	3	4	5	6	7	8	9
zero	uno	due	tre	quattro	cinque	sei	sette	otto	nove

arabo arabo or.

sifr				arbaà				thamania	
صفر ا	وَاحد	اثثان	ثُلاَث	أَرْبَع	خمسة	ستة	سَبْعة	ثَمَاثيةٍ	تسنعة
•	1	۲	٣	۴	۵	Ŷ	٧	٨	٩
•	١	۲	٣	٤	٥	٦	٧	٨	٩

	0	1	2	3	4	5	6	7	8	9
Cinese test.	0	<u> </u>	_	三	四	五.	六	七	八	九
dàxiě	零	壹 o 幺	煮 o 煮	叄0叁	肆o两	伍	陸	柒	捌	玖
huāmă	0	o —	o □	川 o 三	X	ර		<u> </u>	主	夂
	líng	уī	èr	sān	sì	wŭ	liù	qī	bā	jiŭ

	10	20	30	40	100	1.000	10.000
Cinese test.	十0什	# o # ==+	卅 三十	卌 四十	百	千	万
dàxiě	拾	念 貳拾	叁 拾	肆拾	佰	仟	萬
	shí	èr shí niàn	sān shí sà	sì shí xì	bǎi	qiān	wàn

Ge'ez

0	1	2	3	4	5	6	7	8	9
	፩	Ē	፫	ğ	ጅ	½	<u> </u>	ጟ	Ħ
bade	hade	kilte	seleste	arba'ete	hamushte	shidishte	shob'ate	shomonte	tishi'ate
10	20	30	40	50	60	70	80	90	100
ī	ব	й	બૃ	7	ጟ	ğ	Ť	7	<u>?</u>
asserte	isra	selasa	arbe'a	hamsa	sisa	seb'a	semanya	tes'a	mi'eti

5) Leggi di composizione (1)

- Permettono di formare numerali composti a partire dai numerali fondamentali
- Quanti sono i numerali fondamentali?
 il sistema indo-arabo ne ha dieci, i sistemi cinesi testuale e dàxié diciassette, la lingua Wolof ne ha otto.
- Tipo di notazione:
 - posizionale,
 - □ additiva,
 - □ d'altro tipo (mista,...)

nella cultura cinese ci sono, per scopi diversi, sia sistemi non posizionali (*testuale* e *dàxiě*), sia il sistema *huāmă* posizionale in base 10

principio additivo o principio moltiplicativo all'interno di un sistema di notazione:

AB significa A+B, A×B, A×C+B (C base), od altro ancora? e le parole? It. tredici = 3+10, trenta = 3×10

5) Leggi di composizione (2)

- L'unione degli elementi del numerale è realizzata:
 - per giustapposizione:
 - (sittat àshra,16) سِتَّة عَشْرة (sittat àshra,16)
 - □ tramite un'apposita congiunzione o preposizione:
 - 🗆 Ar. سِتّة وَ عِشْرُونَ (sitta ua hishruna, 26). وَ significa "e"
 - Ru. девятнадцать (dyevyatnadtsat, 19) девят(ь)-на-дцать: "nove e dieci", дцать è forma contratta di десять 10
 - □ Alb. *njëmbëdhjetë* (11), cioè *një-mbë-dhjetë: "*uno sopra dieci"
- Ordine crescente o decrescente:
- le unità a destra e ordine crescente a sinistra
- Inversioni come in Tedesco, in Arabo (centinaia, unità, decine)
- Raggruppamenti in lettura come in inglese: 1971 nineteen seventy-one
- Principio del completamento: *nove* espresso come *manca uno a dieci* Bengali: 19 è ລ *unish: "uno a venti"*, 29 ເຈັ, *unterish: "uno a trenta"*. Tamil: 10 è Ѡ (*patthu*); 9 è ఈ (*onpatthu*), ossia *onru patthu* "uno a dieci"

6) Regolarità ed organicità dei numerali:

- Molte lingue esprimono i numerali con parole composte assai coerenti col sistema numerico e seguono quasi sempre le regole generali che si desumono osservandolo, altre sono ricche di eccezioni
 - \square trentacinque = 3×10+5 è molto regolare
 - □ *quindici =* 5+10 non è coerente col resto del sistema:
 - □ quin- è 5 detto con un radicale che si usa solo qui,
 - ☐ -dici è 10 detto con un termine che si usa solo nella II decina
 - anche la regola di premettere le unità alle decine si usa solo per i numeri da undici a sedici, poi con diciassette si torna alla regola generale (decine-unità) ma sempre con -dici (regola locale)

6) Regolarità ed organicità dei numerali: (2)

Nelle lingue dell'Europa occidentale abbondano irregolarità:
 in Italiano nella seconda decina abbiamo un flagrante cambiamento di regola: sedici e diciassette;
 le decine dieci e venti (non duedieci o duenti) non seguono la regola generale numerale fondamentale - suffisso di decina
la seconda decina è irregolare anche in Inglese: eleven, twelve, thirteen, ed anche per le decine si ricorre a parole speciali: ten, twenty, thirty, forty,
□ in Francese si riscontrano le stesse irregolarità nella seconda decina: (onze, seize, dix-sept) e nelle decine (dix, vingt),
nel Francese parlato in Francia ed in molte colonie ed ex colonie Numeri Naturali da 80 (quatre-vingt = 4 ×20), a 99 (quatre-vingt-dix-neuf = 4 ×20+10+9) si esprimono con un sistema in base 20, vestigia di una fase storica per cui sono passate anche molte altre culture;
 nella stessa lingua anche la base 60 (probabilmente in quanto multiplo di 20) ha una sua validità locale per i Naturali da 70 (soixante-dix = 60+10) a 79 (soixante-dix-neuf = 60+10+9).

6) Regolarità ed organicità dei numerali: (3)

- In Sinhala nella seconda decina c'è analoga irregolarità: 11 è ekolaha (1+10), 12 è dolaha (2+10), ma 13 è daha tuna (10+3, invertendo); l'inversione dura fino a 15, paha lowa, (che presenta anche un altro nome per 10); dal 16, daha saya, in poi si riprende con la regola generale.
- In Arabo invece le poche eccezioni sono dovute alla sopravvivenza di forme duali.
 Venti (۲۰) è عَشْرُونَ (ishruna), dal duale di عَشْرُونَ (àshra, 10).
- Anche le lingue dell'Europa orientale hanno poche irregolarità, dovute soprattutto a fenomeni fonetici.
- In Cinese non ci sono quasi irregolarità e c'è comunque sempre l'alternativa regolare di ogni termine.

 I numerali orali dello Hindi subiscono molte variazioni dovute a fenomeni fonetici per cui appaiono assai disorganici

0	suña	10	das	20	bîs
1	êk	11	gheârah	21	êkkîs
2	do	12	bârah	22	bâîs
3	tīn	13	terah	23	teîs
4	chār	14	čòdah	24	caubîs
5	pāmch	15	pa\drah	25	pacîs
6	chah	16	solah	26	chabîs
7	sāt	17	sattrah	27	sattaîs
8	āth	18	aţhârah	28	atthaîs
9	nau	19	unnís	29	unatîs

Rappresentazioni numerali

Sistema posizionale in base 10

indoarabo	0	1	2	3	4	5	6	7	8	9
$urd\bar{u}$	*	١	۲	٣	۴	۵	9	V	٨	٩
forma <i>urdū</i> più antica	•	-	۲	1	٢	З	7	4	۸	9
arabo orientale	*	-	٢	۲	٤	9	۲	٧	λ	٩
punjābī	0	٩	ď	ന	8	Į	ťω	9	t	ť

$urd\bar{u}$	punjābī	sviluppo polinomiale	indoarabo
19	٩É	$1\times10^{1}+6\times10^{0}$	16
1 0A	วน	2×10 ² +5×10 ¹ +8×10 ⁰	258
۳•۸۴	ጸ۰፫ጸ	$3 \times 10^3 + 0 \times 10^2 + 8 \times 10^1 + 4 \times 10^0$	3.084

0	1	2	3	4	5	6	7	8	9
0	٩	ર	(M)	8	ਧ	٤	2	t	ť
ਸਿਫਰ	ਇੱਕ	ਦੋ	ਤਿੱਨ	ਚਾਰ	ਪੰਜ	ਛੇ	ਸੱਤ	ਅੱਠ	ਨੌਂ
صفر	إک	دو	بَن	جاز	بنج	43	سک	ألمه	نو
sifar	īkk	do	tīnn	chā	pānj	cheh	satt	āth	naum

Punjābī

10	20	30	40	50	60	70	80	90
90	3 0	റ	γo	Цо	ć٥	90	C ∘	ť∘
ਦੱਸ	ਵੀਹ	ਤੀਹ	ਚਾਲੀ	ਪੰਜਾਹ	ਸੱਠ	ਸੱਤਰ	ਅੱਸੀ	ਨੱਬੇ
دس	ویِہ	نیہہ	جالي	ينجاه	سته	ستر	اسى	نوے/نبے
dass	wīh	tīh	cālī	pamjāh	sāthth	sattar	āssī	nabbe

10	11	12	13	14
90	99	ฯฉ	43	98
ਦੱਸ	ਗਿਆਰਾਂ	ਬਾਰਾਂ	ਤੇਰਾਂ	ਚੇਂਦਾਂ
دس	گیاراں	باراں	تيراں	جوداں
dass	giārām	bārām	tērām	chaudām
15	16	17	18	19
१य	٩É	99	95	9 ੯
੧੫ ਪੰਦਰਾਂ	੧੬ ਸੋਲ਼ਾਂ	੧੭ ਸਤਾਰਾਂ	੧੮ ਅਠਾਰਾਂ	੧੯ ਉਨੀ

100	1.000	100.000	1.000.000	10.000.000
900	9000	900000	9000000	9000000
ਸੌ	ਹਜਾਰ	ਲੱਖ	ਦੱਸ ਲੱਖ	ਕਰੋੜ
ثنو	ہزار	لکھ	دس لکھ	کروڑ
sau	hajār	lakkh	dass lakhkh	crore

2 3 4 5 1 6 8 9 0 Ŷ ۵ ٧ ٨ ٩ ابک آڻھ بانح نَين جار سك نو صقر دو 42 do chār āth $a\bar{\imath}k$ pānch chahsifar $t\bar{\imath}n$ sāt nau

urdū

10	20	30	40	50	60	70	80	90
١.	۲.	٣.	۴.	٥٠	9 •	V •	۸٠	٩.
دس	بیس	نيس	جاليس	بجاس	ساته	ستر	اسی	نو _
das	bīs	tīs	chālīs	pachās	sāth	sattar	āssi	nawwev

10	14		J	20	۲.		Z	30	۳.		47-
1.0		دس	das	20		بيس	bīs			ښس	tīs.
11	7	گيل،	ghyārah	21	۲	اككيس	ikkīs.	31	Ť	اكثبس	iktīs
12	17	بار	bārah	22	۲	بائيس	bāīs	32	ř	بنبس	battīs
13	۱۳	ý	terah	23	۲	ئےایس	tāīs	33	ŀ	کینتیس	taimtīs.
14	14	جوده	chaudah	24	4.4	جوييس	chaubīs	34	٣۴	جونتيس	chaumtīs
15	18	يندره	pandrah	25	7.0	پجيس	pachīs	35	۳۵	يبنتيس	paimtīs
16	19	سولہ	solah	26	۲۶	جهبيدس	chabbīs	36	7	چهنڊ س	chhattīs
17	YY	سکرہ	satarah	27	۲٧	ستايس	satāīs	37	¥	سينتيس	saimtīs
18	1.4	اثهاره	ātthārah	28	YA	الهائس	āthāīs	38	٣A	اڑئیس	artīs.
19	19	انبس	unnīs	29	79	انتبس	untīs	39	٣٩	انتاليس	untālīs

100	1.000	100.000	1.000.000	10.000.000
1	1	1	1	1
سنو	ہزار	لاكه	ىس لاكھ	كروڙ
sau	hazār	lākh	das lākh	karor

7) <u>Basi</u> (1)

- La base di un sistema posizionale è un numero che serve ad esprimere tutti gli altri.
- Ogni numero naturale è interpretato come somma di multipli di potenze della base.
- sistema indo-arabo, posizionale in base 10;
- I primi dieci numeri naturali sono associati alle dieci cifre 0, 1,
 2, 3, 4, 5, 6, 7, 8, 9 (numerali fondamentali)
- Naturali maggiori sono scomposti in potenze di dieci.
- Il numerale 121 significa:

$$1 \times 10^2 + 2 \times 10^1 + 1 \times 10^0 = 100 + 20 + 1$$

7) <u>Basi</u> (2)

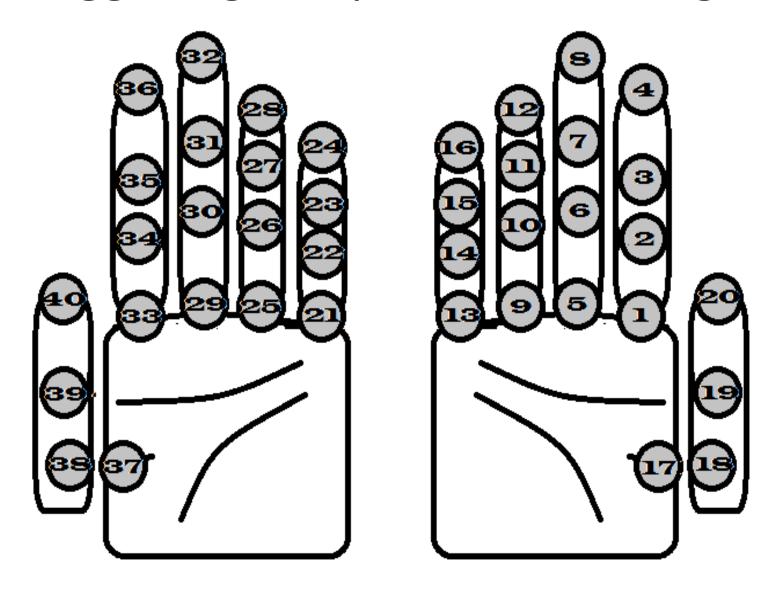
- sistema cronologico, posizionale misto assai irregolare con basi 10, 60, 24, 30 (o 31 o 28 o 29), 12 (ma anche 7, 4, 365);
- sistema goniometrico (basi 10 e 60);
- sistema binario (base 2);
- sistema musicale (basato su quarti di unità)
- grande importanza storica delle basi 5 e 20:
 - □ ampie testimonianze lessicali;
 - □ più raramente, cambiamento di base per certi sottoinsiemi (come in Francese);
- sistemi in base 5 (Wolof) sono in uso ancora oggi.

8) L'ordine di grandezza privilegiato

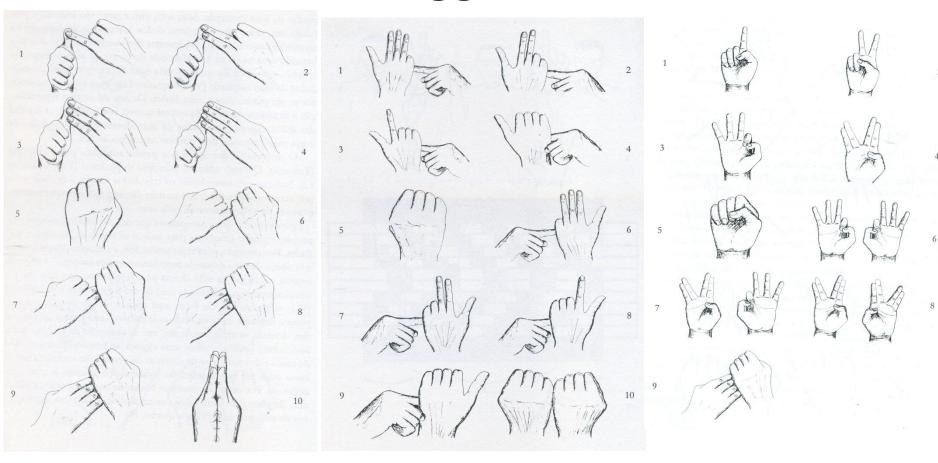
- Nel sistema indo-arabo si privilegia il 1.000 e si mette un segno di separazione (il puntino o, nel mondo anglosassone, la virgola) a separare le migliaia, ogni tre cifre
- Nei sistemi della cultura cinese il separatore si mette ogni quattro: si privilegia il 10.000
- Anche per i greci antichi la miriade costituiva una estremo nel conteggio

Diffusione e ruolo del sistema indo-arabo

- Le cifre indo-arabe 0 1 2 3 4 5 6 7 8 9 ed il sistema posizionale in base 10 sono ormai diffusi universalmente. (sistema internazionale)
- Commercio, colonialismo, evangelizzazione, radio e televisione, reti telematiche, globalizzazione lo hanno reso un patrimonio di tutta l'umanità.
- Ovunque questo sistema è parte della lingua delle scienze e degli usi più formali (economia, registrazione legale, uso ufficiale,...).


È usato correttamente in tutto il mondo:

- da chiunque abbia un'istruzione di livello universitario,
- da moltissimi che hanno studiato sino alle scuole secondarie,
- da gran parte di quanti hanno studiato sino ad ordini inferiori o che non hanno studiato affatto ma lo hanno appreso per diversi canali (nelle transazioni commerciali, nei mezzi di comunicazione,...).


Gli allievi e le loro famiglie

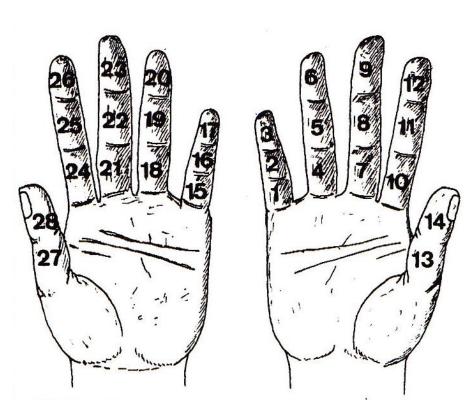
- probabilmente lo conoscono e sono in grado di usarlo, specialmente se hanno un passato di scolarizzazione,
- a seconda della loro cultura di riferimento, possono conoscerne anche altri e sentirli più vicini,
- le caratteristiche di questi sistemi possono influenzare le immagini ed i modelli che si formano nelle loro menti a proposito dei numeri naturali.

Conteggio digitale pakistano e bengalese

Conteggi africani

Yao (Malawi, Mozambico)

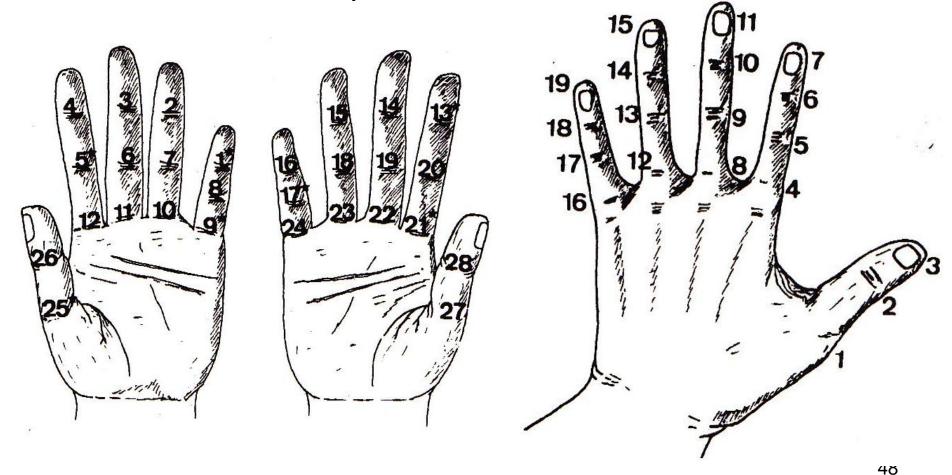
Makonde (Mozambico)

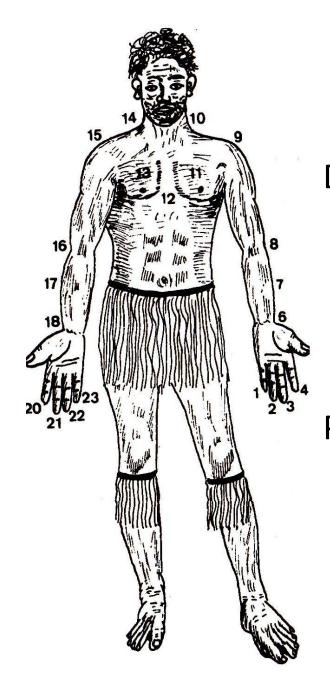

Shambaa (Tanzania, Kenya)

Da (Gerdes 2007)

Altri esempi (Ifrah, 1983)

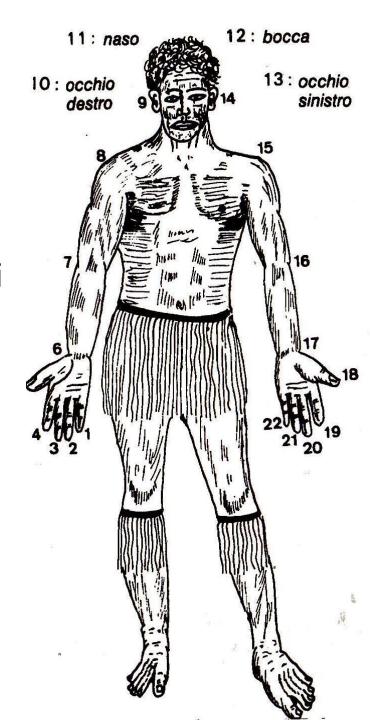
Diffuso in Asia

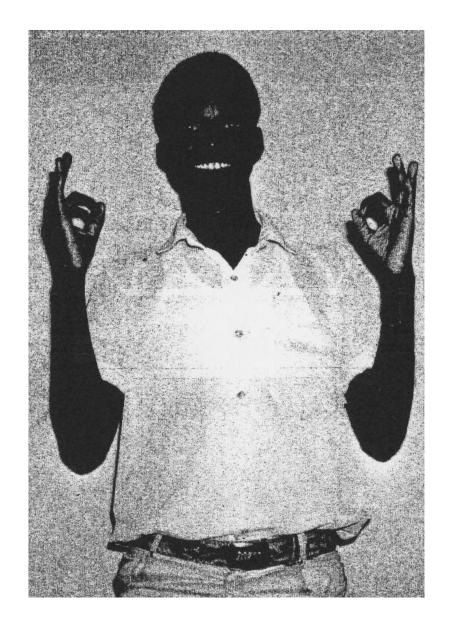

Altro sistema bengalese



Sistemi europei medievali (Ifrah, 1983)

Venerabile Beda (VII sec. E.v.)





Oltre le dita (Ifrah, 1983)

Due sistemi di calcolo corporale tipici di popolazioni della Nuova Guinea

Principio del successivo: si scorrono le parti del corpo

 Non tutti i sistemi di conteggio si basano sul successivo

> 6 in un sistema simbolico ruandese (Zaslavsky 1973)

Il contratto didattico

- In aula tra studenti ed insegnante si instaura inevitabilmente un sistema di convenzioni e reciproche aspettative, per la maggior parte implicite ed inconsapevoli, che regola tutto quel che accade.
- Esempi:
- non si interroga il mercoledì;
- le soluzioni degli esercizi si scrivono in rosso;
- i riferimenti dei disegni geometrici seguono i quadretti del quaderno;
- in ogni attività matematica si svolgono calcoli;
- la risposta ad ogni quesito è un numero;
- il risultato di certi calcoli è sempre un numero intero;
- elenco aperto...

Le clausole possono avere origine da:

- concezioni della scuola
- concezioni sulla matematica
- concezioni sull'insegnamento della matematica
- regole (teoremi) di un certo ambito, la cui validità viene generalizzata indebitamente (per mancanza di chiarezza nella motivazione)
- comportamenti ripetitivi o fatti accaduti frequentemente nella storia della classe (tutti gli esercizi svolti su di un certo argomento erano di un certo tipo)
- prassi generiche entrate nell'uso
- impressioni ed opinioni che gli allievi si sono fatti

- Di per sè il contratto didattico non è negativo, anzi è un fatto inevitabile.
- A creare problemi è semmai l'eccessiva rigidità delle clausole e la mancanza di motivazioni.
- Esempio: la risposta nel caso dell'âge du capitaine. Due calusole:
 - 1. Se mi hanno fatto una domanda significa che debbo rispondere
 - 2. Le risposte in matematica sono sempre numeri
- Esempio, problema di Schoenfeld: "Sono arrivati alla stazione 135 soldati. Quanti autobus da 30 posti sono necessari per portarli in caserma?" Risposta di quasi tutti gli allievi: 4,5.

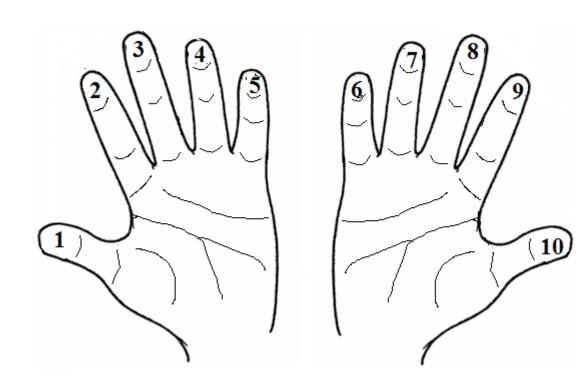
Ma che senso ha dividere un autobus in due?

1. Un risultato numerico è comunque una risposta sufficiente, indipendentemente dal significato

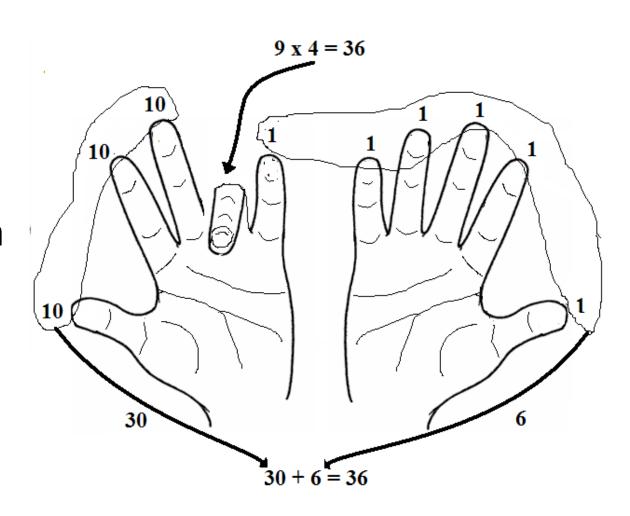
- In genere ci si accorge dell'esistenza del contratto didattico quando ne viene trasgredita qualche clausola dagli allievi o dall'insegnante
 - Una richiesta inaspettata, un problema insolito, un comportamento inusuale, o l'interrogazione da parte di un altro insegnante,...
- Esplicitare le clausole del contratto didattico, provare a trasgredirle, metterle alla prova e chiarirne il senso può essere utile, ma per questo occorre esserne consapevoli, cosa che non è sempre facile
- Pure utile può risultare dare spesso motivazioni di quello che si enuncia, si fa e si richiede: in tal modo si legano oggetti, processi e risultati al contesto teorico e se ne facilita la costruzione di significato

Clausole limitanti

- Talora il contratto didattico agisce limitando le capacità dell'allievo.
 - Esempio: durante un'interrogazione uno studente, per rispondere ad un certo quesito, non osa usare i risultati di calcoli già svolti rispondendo al quesito precedente, perché secondo lui ciò non è leale.
- La *scolarizzazione* stessa può essere vista come un effetto dell'instaurarsi di clausole di contratto didattico:
 - Limito le mie capacità di conteggio e calcolo perché è questo che mi viene richiesto e fingo di non sapere altro che ciò che è stato esposto a scuola.


Clausola di "separazione":

- "in classe durante le ore di matematica si usano solo le rappresentazioni, le definizioni ed i procedimenti che si sono appresi in classe durante le ore di matematica"
 - Ci sono insegnanti che sistematicamente non accettano procedimenti diversi da quelli che hanno insegnato loro
- impedisce la trasferibilità di conoscenze e competenze tra contesti;
- limita collegamenti interdisciplinari;
- preclude le possibilità conseguenti in ampliamento e consolidamento delle relazioni di significato;
- conferisce alle attività didattiche un carattere artificiale, confermando la separazione tra matematica scolastica e mondo reale
- sminuisce come "non scientifici" i saperi del contesto culturale nativo dell'allievo
 - culture non italiane
 - cultura non urbana
 - culture di ceto
 - lingue e dialetti


- Complica i conflitti cognitivi per gli di cultura non italiana
- istanze matematiche di due riferimenti in conflitto.
 - Esempio: un allievo al pomeriggio aiuta i genitori in negozio, conta e calcola le quantità di merci, sta alla cassa senza lasciarsi scappare un centesimo ed è bravissimo a dare i resti, ma a scuola sbaglia spesso le operazioni aritmetiche. Infatti:
 - non si arrischia ad usare algoritmi e competenze che pure gli appartengono;
 - tende a dimenticare procedure e modelli che gli sono suggeriti dalla sua lingua e dalla sua cultura;
- queste vengono confinate rigidamente alla vita extrascolastica

Voi accettereste una moltiplicazione per 9 così?

- Moltiplicazione per 9 alla filippina:
- Numeriamo le dita delle mani aperte da 1 a 10

- Pieghiamo il dito corrispondente al secondo fattore
- Ogni dito prima di quello piegato vale 10
- Ogni dito dopo vale 1
- Sommiamo ed ecco il risultato

Aspetti culturali del contratto didattico

- Non deriva solo dal principio d'autorità
- è parte di un più generale contratto istituzionale (pedagogico)
- che a sua volta è parte del *contratto sociale*
- si basa su istanze implicite condivise in un gruppo sociale
- Culture diverse producono prassi d'aula e rapporti sociali diversi
 Esempi
- Nella cultura marocchina il maestro svolge compiti più ampi relativi anche alla vita familiare (dirime le controversie, consiglia...)
- 2. In molti paesi la scuola privilegia una didattica addestrativa orientata al superamento di test: memoria ed esercizi ripetitivi

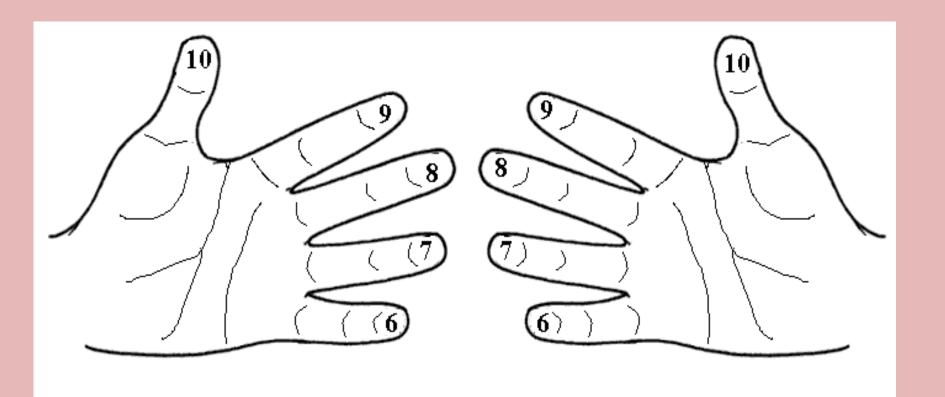
Aspetti linguistici del contratto didattico

- Ruolo cruciale in matematica delle rappresentazioni
- Difficoltà di costruzione di legami tra segni e oggetti
- Difficoltà operatorie sulle rappresentazione
 - Frazioni
 - Segni + e -
 - Cosa è lecito e cosa non lo è nelle espressioni?
- Il Contratto didattico influisce su tutta la comunicazione

Problema linguistico-semiotico

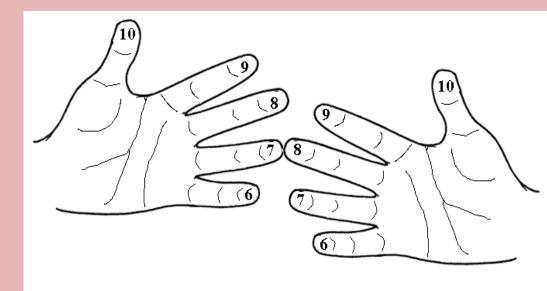
- L'aspetto linguistico è particolarmente importante perché:
- 1) La matematica stessa ha alcune caratteristiche simili a quelle dei linguaggi (ha sintassi, semantica,...)
- 2) Gli oggetti della matematica non sono raggiungibili dai sensi
- tutti, dal bambino allo scienziato, hanno la necessità di rappresentarli
 - per nominarli, scriverne, parlarne,...
 - □ per immaginarli (imago), idearli (id- da vid-, occhio),
 - per coglierne gli aspetti importanti.
- Ecco perché una gran parte del contratto didattico riguarda proprio le forme di rappresentazione.

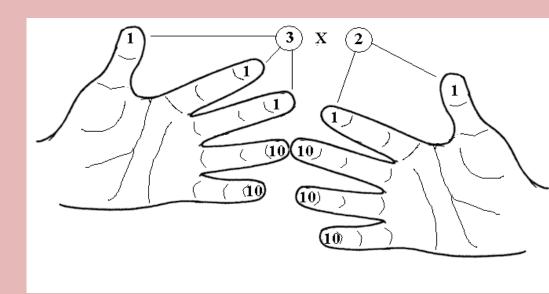
Relazioni di significato

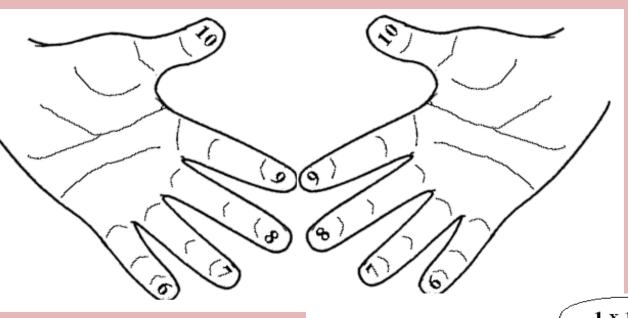

- Rappresentare significa costruire un sistema condiviso di segni e riferimenti ad oggetti
- Ogni cultura ha i suoi sistemi di rappresentazione e le sue modalità per crearne di nuovi inglobando oggetti che le sono estranei
- Conoscere i sistemi di rappresentazione, i procedimenti, i temi
 topici delle diverse culture matematiche diviene dunque
 molto importante per instaurare clausole opportune o almeno
 per evitare che, a nostra insaputa, nella didattica che
 mettiamo in atto ci siano clausole che creano difficoltà ad
 alcuni allievi

Attività di gruppo Bologna, IPIA Fioravanti, a.s. 2008/2009

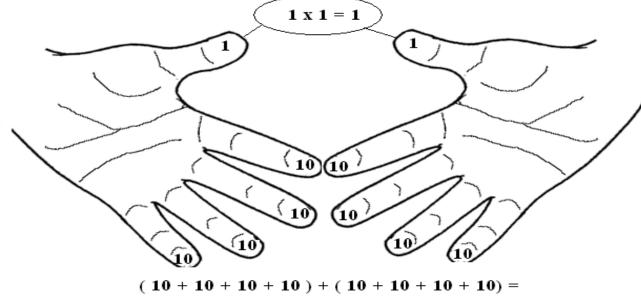
- Studenti di diversa estrazione
- Pratiche matematiche apprese a casa o a scuola nei Paesi d'origine di alcuni compagni
- Presentazioni per le classi intere
- Fonti: ricordi, testimonianze, ricerche in rete


1) moltiplicazione con le dita

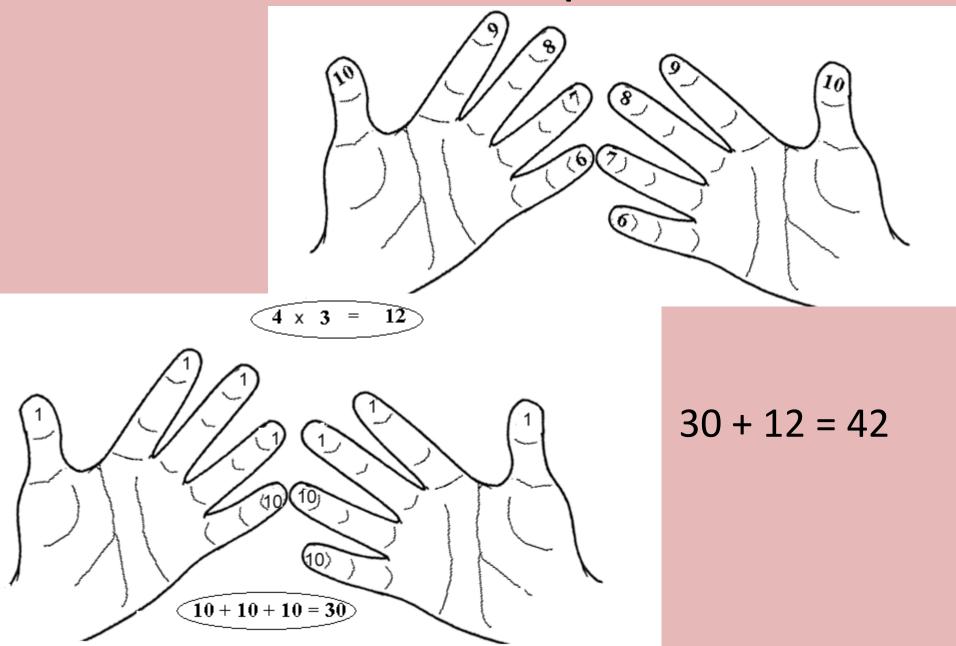

- Nelle Filippine alle elementari si insegna questa tecnica di calcolo usando le dita
- Si moltiplicano numeri interi tra 6 e 10 senza usare la calcolatrice
- Pollice = 10, indice = 9, medio = 8, anulare = 7, mignolo = 6


esempio: 7 x 8

- Si mettono a contatto le dita che rappresentano i due fattori
- Le dita al di sopra delle due a contatto valgono 1
- Le altre valgono 10
- Si sommano le decine:
 10+10+10+10+10=50
- Si moltiplicano le unità di ciascuna mano: 3 x 2 = 6
- Si sommano i due numeri: 50+6 =56



Un altro esempio: 9 x 9

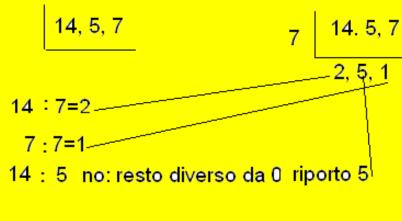


$$1 + 80 = 81$$

40 + 40 = 80

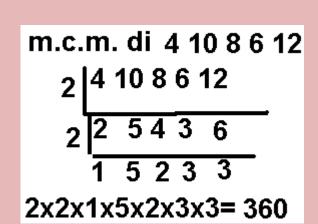
Un ultimo esempio: 6 x 7



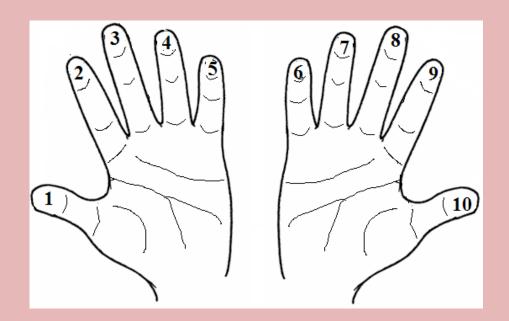

Avete capito???

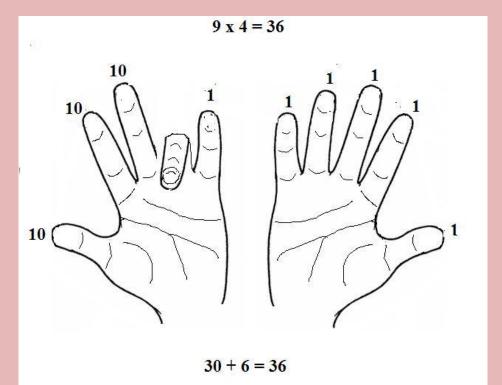
Adesso provate voi!!!!!!

Grazie per l'attenzione E buon calcolo


2) Onko metodo ghanese per mcm

14. 5, 7


moltiplico $7 \times 2 \times 5 = 70$



quindi 70 è m.c.m. di 14, 5, 7

3) Moltiplicazione per 9 alla filippina

- Serve per moltiplicare per 9 un numero tra 1 e 10
- Si numerano le dita stese
- Si abbassa quella che rappresenta il numero da moltiplicare per 9
- Le dita precedenti sono decine, quelle successive sono unità

Metaregola di rappresentazione

- Negli esempi filippini le dita cambiavano significato (da unità a decine)
- Nella cultura filippina è normale cambiare rappresentazione a seconda dell'operazione che si deve fare
- Si tratta di passaggi (trattamenti) molto più frequenti che nella cultura italiana
- Paradossalmente a creare problemi al ragazzo filippino può essere la fissità o se vogliamo la maggiore limitatezza delle rappresentazioni della cultura italiana
- Ciò accade anche nei numerali orali, che per molti filippini sono disponibili in almeno 3 forme da usare in occasioni e contesti diversi

Conflitti culturali e conflitti cognitivi

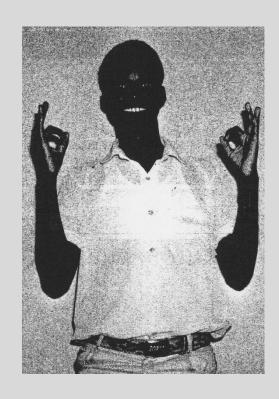
- Crisi dei Fondamenti (inizio XX secolo)
- Studi antropologici ed etnomatematici
- Globalizzazione
- → non esiste solo la matematica di tradizione greco-araba (matematica accademica)
 - Impostazione ipotetico-deduttiva (definizioni da oggetti primitivi, assiomi, teoremi, dimostrazioni), numerali indoarabi in notazione posizionale (base 10), prevalenza di metodi algebrici (coordinate cartesiane) ...
- Quale matematica portano in classe i nostri studenti? Quali visioni di scienza?

I nostri studenti in IeFP e CPIA

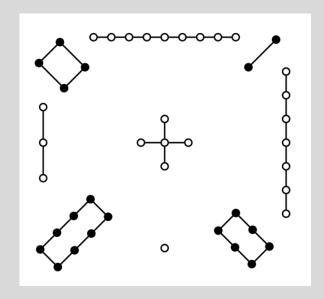
- Percorsi scolastici sofferti alle spalle
- Molte competenze dalla loro vita reale
 - Rappresentazioni non formali
- Conoscenze e competenze dal percorso precedente
 - Può essere molto diverso perché ogni sistema scolastico tiene maggiormente a cose diverse
 - Es: Biologia in molti paesi è studiata meglio che in Italia
- Ruolo sociale e psicologico da adulti o quasi
 - Altrimenti la scuola può servire a maturare
- Aspettative su scuola, didattica e discipline

Conoscere le aspettative per

- Didattiche efficaci
- Arricchire il curriculum
- Rendere significative le conoscenze e le competenze
- Dimostrare rispetto per gli studenti e per il loro ambiente
- Mediare con fini e prassi del sistema di istruzione istituzionale italiano:
 - Obiettivi generali e disciplinari,
 - Contenuti indicati nelle programmazioni
 - Metodi ...

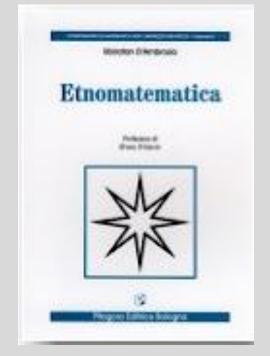

Riferirsi alla realtà

- I nostri studenti hanno molte cose in comune nella loro realtà oggettiva
- Sfruttare la realtà: supermercato, bollette, gestione della casa, problemi della vita adulta
- Rischio obsolescenza per cambiamenti rapidi nei modi di vita:
 - Cellulari e computer pochi anni fa erano molto diversi
 - Viaggiare, prenotare un posto ad uno spettacolo
 - Scommesse e giochi d'azzardo
 - Economia e finanza hanno un interesse centrale nei discorsi di tutti
- Dialogare ed osservare sempre studenti e società e studiarli con l'occhio dell'antropologo


Accettare molte vie

- Diversità di metodi, modelli, concezioni e visioni
 - Prevedere più soluzioni e più metodi per un problema
 - Proporre in contenuti in diversi registri (verbale, grafico, disegno, ...)
- Intercettare i diversi stili cognitivi presenti
 - Ogni cultura ne privilegia alcuni e li allena
 - Intelligenze diverse
- Rispetto per lo studente ed il suo ambiente di estrazione

Grazie per l'attenzione


6 in un sistema simbolico ruandese non basato sul principio del *successivo* (Zaslavsky 1973)

Il quadrato magico di Luò Shū (洛書) (Nicosia 2010)

La strada delle competenze.

Unità di apprendimento per i percorsi di primo livello - Primo periodo Diploma di scuola secondaria di primo grado.

https://www.loescher.it/dettaglio/opera/o_32276/la-strada-delle-competenze

Matematica e scienze.

Percorsi di alfabetizzazione disciplinare.

http://www.loescher.it/dettagliocatalogo/O_3696/Matematica-e-scienze

 Matematica e scienze: avviamento alle discipline per la bassa scolarità di Giovanni Nicosia – (relazione)

http://ida.loescher.it/matematica-e-scienze-avviamento-alle-discipline-per-la-bassa-scolarita-di-giovanni-nicosia.n2732

- Numeri e culture.
- Matematica e scuola in Cina, Corea e Giappone Elementi culturali estremo-orientali per la didattica della matematica http://www.pitagoragroup.it/pited/Nicosia1805.html
- Cinesi, scuola e matematica
 https://www.slideshare.net/GGNicosia/cinesi-scuola-e-matematica-3009647

Riferimenti

- Armati S., Nicosia G.G. (2017) La strada delle competenze. Matematica e scienze. Torino-Bologna: Loescher Editore-Edizioni La Linea.
- Brousseau G. (2008) Ingegneria didattica ed Epistemologia della Matematica.
 Bologna: Pitagora.
- D'Ambrosio U. (2001) Etnomatematica. Bologna: Pitagora.
- D'Amore B. (1999) Elementi di Didattica della Matematica. Bologna: Pitagora.
- Freire P. (1997) Pedagogia da autonomia: saberes necessários à prática educativa. São Paulo: Paz e Terra.
- Gardner H. (1994) *Intelligenze multiple*. Milano: anabasi.
- Ongini V. (2011) Noi domani. Un viaggio nella scuola multiculturale. Bari: Laterza.
- Nicosia G.G. (2016) Matematica e scuola in Cina, Corea e Giappone. Bologna: Pitagora.
- Nicosia G.G. (2010) *Cinesi, scuola e matematica.* Morrisville: Lulu.com.
- Nicosia G.G. (2008) Numeri e culture. Trento: Erickson.
- Scandiuzzi P. (2010) Accepting the Other: Different Division Expression. Revista Latinoamericana de Etnomatemática, 3(1). 67-78
- Vygotskij L.S. (2007) Pensiero e linguaggio. Firenze: Giunti.
- Zaslavski C. (1973) Africa counts. Chicago: Lawrence Hill Books.